本文来自微信公众号“脑极体”(ID:unity007)净利润下降、股价下滑、巴菲特减持,IBM的转型过程分外艰难。目前相当普遍的一种说法是,IBM错过了移动时代后,又正在错过AI时代。的确,硬件被英伟达的GPU和谷歌的TPU抢尽了风头,算法上比不过DeepMind庞大的论文量,应用落地也比不过微软、百度范围更广。IBM在这个人人高举AI大旗的年代,多少显得有些尴尬。

可要说IBM在人工智能上毫无建树,那可是太冤枉了。或许你曾经被百度大脑、搜狗机器人在综艺节目的表现所惊艳,那么你应该知道,早在2011年,IBM的超级计算机“沃森”曾在问答节目《危险边缘》中击败两位人类选手,拿下历史最高分。从那时起,或者更早,沃森就成了IBM冲击AI大时代的生力军。IBMWatson核心能力:解读非结构化数据沃森以此来自于IBM公司创始人托马斯·J·Watson的名字,准确来说沃森是一种“平台”或“系统”,拥有理解、推理、学习等等多种能力。从上个世纪开始,IBM就在人工智能领域不断探寻,能和人类交流、提炼信息的沃森只是成果之一。别说比别人早一步登上问答节目,就连棋牌类人机大战的戏码,IBM也早就玩过。

在1997年,IBM的计算机程序“深蓝”就曾在国际象棋的战场上战胜了棋王卡斯帕罗夫。而从深蓝到沃森的变化,正是IBM在AI方向上最关键的选择。有人说深蓝是沃森的前身,这话对也不对。深蓝的应用范围是象棋,很围棋一样,是一种数字游戏,深蓝还拥有480颗专门为象棋打造的芯片——极有可能为了暴力穷举。沃森的应用则在于人机对话问答,所处理的都是语言、声音甚至是图片。而相比深蓝的硬件形态,沃森已经超脱了禁锢,进化成了技术平台。

最为关键的一点是,沃森专注的是理解非结构数据。理解什么是非结构化数据,要先知道结构化数据。结构化数据存在于ERP系统与数据报表之中,是经过标注的、存在于数据库之中的数据。所以非结构化数据,自然就是那些只能用.txt、.MP3、.avi等格式储存的数据。所以,沃森的理解、分析、提炼和推理,可以建立在自然语言和图片之上。认知计算与人工智能,究竟是话术差异还是技术差异这样看来,沃森更像是一个巨大且牛逼的数据处理平台,可在这个一切建立在数据之上的时代,又有哪个人工智能产品不是这样呢?在遥远的2011年,IBM好像还没准备好让沃森站上人工智能这个风口,相反,IBM为沃森提出了一种非常新鲜的概念:CognitiveComputing——认知计算。

公认认知计算的解释是这样的:“认知计算代表一种全新的计算模式,它包含信息分析,自然语言处理和机器学习领域的大量技术创新,能够助力决策者从大量非结构化数据中揭示非凡的洞察。认知系统能够以对人类而言更加自然的方式与人类交互;认知系统专门获取海量的不同类型的数据,根据信息进行推论;从自身与数据、与人们的交互中学习。这么看来,的确很难分辨所谓认知计算和人工智能之间的关系,尤其是弱人工智能,两者之间的定义非常相似。都是建立在数据之上,利用NLP、机器学习等等技术赋予机器自学习、自进化的能力,让它们能够更好的服务于人类。在Google搜索CognitiveComputing,结果也大多跟IBM有关,现在看来,有关认知计算的一切似乎都是IBM一场失败的造词计划。难道就是因为话术选择的不慎,就让IBM在AI时代落后于人吗?沃森的成绩单,其实没有想象中那么差抛开技术概念的相似,IBM的认知计算,还是和目前很多企业涉猎的人工智能有一些差别的,而这些差别存在于市场辖定之中。

像亚马逊、微软等等企业对于人工智能研发到一定程度上之后,都会落地到一个具体的民用级产品中——Echo、小冰、特斯拉……虽然不能说清这些企业的目标市场究竟在哪,但都在C端市场中做足了姿态。和前一段大家都跟风人工智能音箱的原因一样,你不这么做,就好像不在这个战场。